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Abstract

A penalised interface model, whose strain energy is the penalty functional related to interface adhesion constraint, is

introduced in conjunction with a damageable interface whose local constitutive law, in turn, represents bridging stress

effects, in order to analyse delamination and bridging phenomena in laminated plates. The laminate is modelled by

means of first-order shear deformable layer-wise kinematics and the governing equations are formulated in the form of

a non-linear differential system with moving intermediate boundary conditions related to opportune delamination and

bridging growth conditions. The problem is solved through an analytical approach. The model leads to an accurate and

self-consistent evaluation of the energy release rate and its mode components due to the inclusion of significant con-

tributions arising from coupling between in-plane and transverse shear stresses, and to an asymptotic estimate of in-

terlaminar stresses. The salient features of the proposed model are investigated in the context of an energy balance

approach and of a J-integral formulation, thus providing simple results useful to model delamination growth and

bridging behaviour when mixed mode loading is involved. The accuracy of the proposed model is substantiated through

comparisons with results from continuum analysis obtained by a finite element (FE) procedure. The effectiveness of the

proposed model is highlighted by showing the solution of a two-layered plate scheme subjected to pure and mixed mode

loading conditions and to fibre bridging stresses. The results point out that the present model, despite its low com-

putational cost in comparison with more complex FE analyses, is an efficient tool to predict delamination and bridging

evolution. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The complete utilisation of fibre-reinforced laminates for civil, spacecraft, aircraft structure components
or in the repair or rehabilitation of existing structures, is limited by their tendency to delaminate. As a
matter of fact, laminated structures often exhibit initial delaminations arising from various causes such as
technological imperfections, stress concentration, object impacts and global or local buckling of layers.
Moreover, in rehabilitated structures delamination at the interface between the repairing composite
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laminate and the existing steel or concrete system may also occur as a failure mechanism. An appropriate
modelling of the delamination phenomenon in this kind of structure, must take into account the parameters
which govern the delamination behaviour like fracture toughness and the influence of bridging phenomena
which may increase resistance to delamination and play an important role in delamination behaviour.

Due to anisotropy and non-homogeneity in toughness, a crack starting from these delaminations is often
constrained to grow along the preferred interlaminar direction thus involving mixed mode conditions at the
crack tip. Therefore, in order to accurately predict the growth of delamination when mixed mode loading is
involved, some fracture criteria have been proposed, taking into account the experimental evidence of the
different amount of energy required for mode I or mode II delamination (Hutchinson and Suo, 1992).

Published literature shows great interest both in mode I and mode II interlaminar fracture toughness
testing (Robinson and Song, 1992) and in modelling delamination growth in composite systems (Stor�aakers
and Andersson, 1988; Suo and Hutchinson, 1990; Schapery and Davidson, 1990; Suo, 1990; Cochelin and
Potier-Ferry, 1991; Allix and Corigliano, 1996; Bruno and Greco, 2000, 2001a,b).

On the other hand, experimental evidence (Hwang and Han, 1989; Drzal and Madhukar, 1992) shows
that bridging mechanisms, due to fibre crossover, through-the-thickness reinforcements and particle or
grain bridging in polymer or ceramic matrix laminated composites, may provide a notable increase in
fracture toughness as a delamination extends.

Through-the-thickness reinforcements, in the form of continuous or discontinuous stitches, may improve
the fracture resistance of composites and are an efficient way to protect against delamination (Shu and Mai,
1993; Jain and Mai, 1994; Massab�oo and Cox, 1999).

Fibre crossover is due to fibres crossing the crack plane at a small angle as the delamination runs
switching from one fibre–matrix interface to another (Suo et al., 1992), and provides closure tractions
acting on the crack faces and shielding the crack tip, which diminish as the fibres are peeled out from the
matrix. A softening two-parameter bridging law, which connects crack faces bridging tractions to dis-
placement jumps across the interface, is able to represent the salient features of the phenomenon. It may
depend on the frictional shear stresses between fibre and matrix which develop the matrix–fibre bonding,
and on the number of crossover fibres per interface area unit. The bridging law can be obtained from
micromechanical models or from experimental methods (Cox and Marshall, 1991; Bao and Song, 1993;
Sørensen and Jacobsen, 1998).

An account of crack bridging concepts with reference to bridging modelling in the delamination of
laminated composites can be found in Bao and Suo (1992): in this work mechanical properties which arise
from inelastic processes associated with various bridging laws have been deduced and basic concepts related
to large-scale bridging have been introduced. A fundamental point is that, when the bridged zone is not
negligible in comparison with layer thickness or crack length in laminated composites, the resistance curve
depends on specimen size and geometry and a stress analysis of the composite structure coupled with the
bridging law must be performed.

Thus as the large-scale bridging condition prevails in composites, the analysis of bridging arising from
fibre crossover or through-the-thickness reinforcement must be performed by using the bridging law con-
cepts, the R-curve being no longer a material property.

In the present work a delamination analysis in layered plates which also includes the modelling of
bridging stresses acting at the crack faces, is developed by utilising a refined laminated plate model. The
laminate is divided in two sublaminates by interface elements which are able to simulate cohesive stresses
and to accommodate stress singularities at the delamination front. The hypothesis of plane strain condition
is assumed for sublaminates and its layers are supposed homogeneous orthotropic and linear elastic. A first-
order shear deformable plate model is adopted for each sublaminate. In the undelaminated portion of the
interface a penalised linear interface model, acting in the opening and sliding failure mode directions, is
used to simulate the perfect adhesion between sublaminates. To impose interface adhesion constraint, the
strain energy of the linear interface is treated as a penalty functional. The introduction of a penalised
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interface, leads to a self-consistent method to evaluate energy release rates for mode I and mode II in-
terlaminar crack advance. In fact, the energy release rates mode I and mode II components, are recovered
in the penalty procedure from the interface strain energy aliquots related to opening and sliding dis-
placement jumps, respectively. The above formulation also provides an estimate for interlaminar stresses
which become singular at the delamination front, as the penalty parameter approaches infinity. Since in-
terlaminar stresses are derived essentially from a plate model, the approximations in energy release rates
evaluation obviously depend on the accuracy of the assumed plate model in representing the local crack tip
strain state (Bruno and Greco, 2001b). For the applications here proposed, the first-order shear deformable
plate theory is able to provide results of good accuracy as confirmed via finite element (FE) comparisons.
The plate model can be eventually refined with more accurate plate theories, to improve the interlaminar
stresses reconstruction in more complex laminate schemes.

The use of the first-order shear deformable plate theory allows a refined prediction of energy release rate
components in comparison with classical delamination models, by modifying the singularity order of in-
terlaminar crack tip stresses and accurately taking into account shear effects. In fact, the model includes
coupling terms between shear and bending stress resultants in energy release rate, neglected in models
frequently used in literature which adopt a single plate element to represent the undelaminated region of the
laminate system. These terms may have a notable influence on energy release rate in composite laminated
plate systems (Bruno and Greco, 2001a,b).

The inelastic processes related to the fibre bridging mechanism are taken into account by modelling
bridging tractions acting at crack faces by means of a damageable interface introduced along the bridged
zone. Softening two-parameter interface law with a maximum separation is used to simulate fibre crossover.

The governing equations are obtained through a variational procedure and constitute a non-linear
differential system with moving intermediate boundary conditions. The moving boundary conditions re-
lated to delamination and bridging fronts are governed by opportune growth criteria. The delamination
growth criterion is based on a mixed mode interlaminar fracture condition, whereas the growth of bridging
fronts, related to normal and shear interlaminar bridging stresses, is assumed when limit separations are
reached. The energy release rate modelling is investigated both in the context of an energy balance ap-
proach and of a J-integral formulation, obtaining analytical formulas for the energy release rates useful to
highlight the role which an actual modelling of shear deformability plays in the delamination and bridging
problem.

Analytical solutions are found for a two-layered plate loaded by end forces, and resistance curves are
constructed to show the basic parameters affecting bridged delamination behaviour.

Comparisons with classical delamination models in which the use of the linear interface model is avoided
by adopting a unique plate element in the undelaminated region, are carried out showing that the use of
classical models provides a non-conservative prediction of the real delamination resistance of a layered
system.

Moreover, the proposed approach is validated through comparisons with highly accurate results ob-
tained by a two-dimensional (2D) FE analysis which utilises a non-linear incremental analysis strategy
based on the arc length procedure. The comparisons are carried out for a simplified version of the interface
constitutive law adopted for the analytical model. The numerical approach shows good agreement with the
analytical model.

2. Delaminated plate model

The typical problem of a delaminated laminated plate sketched in Fig. 1 is analysed. The plate has length
L, width B and contains a through-the-width plane delamination of length a whose front is aligned with the
z-axis. The thickness of the two sublaminates separated by the delamination plane is h1 and h2 for the upper
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and lower sublaminate, respectively. A damaged zone is assumed to be developed ahead of the delamin-
ation front in which opening and sliding bridging stresses act along lengths byy and byx, respectively. The
delamination problem is modelled by considering the two sublaminates perfectly bonded along the interface
containing the delamination except along the delamination length a where some bridging mechanisms may
occur. The plane delamination is assumed to advance along the interface with its front parallel to the in-
plane z-axes and plane strain condition in the x–y plane (or cylindrical bending) are supposed.

2.1. Interface model

Using a linear interface whose stiffness approaches infinity as a penalty parameter simulates perfect
adhesion between layers along the undamaged interface. The linear interface has the following linear
constitutive law which connects the traction vector r acting at a generic point of the interface whose unit
normal is coincident with the y-axis, with the relative interface displacement vector D,

r ¼ kD; ð1Þ

where r has components ryy and ryx in the normal ðyÞ and tangential ðxÞ directions, respectively, k is the
stiffness coefficient of the interface, the components of D are the relative displacement between the lower (2)
and the upper (1) sublaminate, Du ¼ u2 � u1 and Dw ¼ w2 � w1, in the normal ðyÞ and tangential ðxÞ

Fig. 1. Scheme of a laminated plate with a cohesive delamination.
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directions, respectively. The components of r and D are positive when aligned with the co-ordinate axes in
Fig. 1.

Utilising the above linear interface allows the sublaminates to be connected along the interface and
provides a self-consistent method to compute both total and individual mode components of energy release
rate. As a matter of fact, the energy release rate mode components for crack advance within the interface
are evaluated as the work of singular interlaminar stresses through the zeroing interface separations at the
delamination front: this leads to the following formulas (Bao and Suo, 1992):

GI ¼ lim
k!1

1
2
kDw2; GII ¼ lim

k!1
1
2
kDu2; ð2Þ

where subscript I, II denotes mode I, II components and Du and Dw refer to the delamination front. Note
that the mode I component GI corresponds to opening transversal relative displacements at the crack tip
Dw > 0 (no contact along the interface is allowed here).

The bridging mechanism is modelled by a non-linear interface whose normal and shear interlaminar
stresses depend locally on the opening and sliding relative displacements across the damaged portion of the
delamination, in the form

r ¼ f ðDÞ; ð3Þ
where the same conventions previously adopted for the linear interface are assumed. In the following it is
supposed that the bridging normal and shear tractions are derivable from a potential U, a function of the
components of the relative interface displacement vector D, such that the following relations hold

r ¼ oUðDÞ
oD

; Uð0Þ ¼ 0; ð4Þ

where oUðDÞ=oD, denotes a vector whose components on y and x axes are the derivative with respect to Dw
and Du, respectively.

Complex non-linear fibre bridging laws derived from different fibre bridging models, can be used
(Spearing and Evans, 1992; Sørensen and Jacobsen, 1998; Iwamoto et al., 1999) but here the simple linear
softening law is considered without affecting the salient aspects of the model. As a matter of fact, the main
objective of this paper is to demonstrate a theoretical approach for an accurate delamination behaviour
prediction.

Bridging stresses arising from fibre crossover can reasonably be simulated through the following two-
parameter softening law:

ryy ¼ r0
yy �

r0yy
Dw0 Dw; if Dw6Dw0;

ryy ¼ 0; if Dw > Dw0;

(
ryx ¼ r0

yx
Du
Duj j �

r0yx
Du0 Du; if Duj j6Du0;

ryx ¼ 0; if Duj j > Du0;

(
ð5Þ

where Dw0 and Du0 are the limit interface separations for normal and tangential interlaminar stresses,
respectively. This constitutive law is decoupled in normal and tangential relative interface displacements
and the directions of closure stresses are opposite to the separation displacements across the delamination.
The potential defined in Eq. (4) assumes the form

U ¼ Uyx þ Uyy ; ð6Þ

where

Uyx ¼
r0
yx Duj j � r0yx

Du0
Du2

2
; Duj j6Du0;

r0
yx

Du0

2
; Duj j > Du0;

(
Uyy ¼

r0
yy Dw� r0yy

Dw0
Dw2

2
; Dw6Dw0;

r0
yy

Dw0

2
; Dw > Dw0:

(

Note that the potential U has been extended over the entire delamination length although bridging stresses
may operate only over the portions of the delamination length referred to as byy and byx. As far as the
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problem of non-differentiability of Uyx is concerned, a perturbed regularising technique may be envisaged,
in which the function Duj j is replaced by the following differentiable function

Duj j � e
2
; for Duj j > e;

1
2e Duj j2; for Duj j6 e;

�
ð7Þ

approaching Duj j as e ! 0.
Although the decoupling between opening and sliding bridging laws may correspond to a mathematical

rather than physical model, this bridging response is able to provide a better understanding in delamination
and bridging phenomena.

2.2. Laminate model

The two sublaminates separated by the delamination plane (see Fig. 2) are assumed to be made of
unidirectional fibre-reinforced plies and each sublaminate is modelled by using a first-order shear de-
formable layer-wise kind of kinematics. Thus the following kinematics assumptions are used for the ith
sublaminate (i ¼ 1; 2):

Uiðxi; yiÞ ¼ uiðxiÞ þ yiwiðxiÞ;
Wiðxi; yiÞ ¼ wiðxiÞ;

�
ð8Þ

where the in-plane Uiðxi; yiÞ and the transverse Wiðxi; yiÞ displacements of the ith plate are expressed as
functions of the corresponding midsurface in-plane and transverse displacements uiðxiÞ and wiðxiÞ, re-
spectively, and of section rotation wiðxiÞ.

The layers constituting the plates are assumed to be homogeneous, orthotropic and linearly elastic and
the constitutive relations for each sublaminate are

Ni

Mi

Ti

8<
:

9=
; ¼

Ai Bi 0
Bi Di 0
0 0 A	

i

2
4

3
5 u0i

w0
i

wi þ w0
i

8<
:

9=
;; i ¼ 1; 2; ð9Þ

where the prime denotes the differentiation with respect the xi co-ordinate; Ni, the in-plane stress resultant;
Mi, the bending moment; Ti, the shear force; Ai, Di, A	

i , the standard axial, bending and shear stiffness,
respectively; and Bi, the extension–bending stiffness. If the two sublaminates are made by specially or-
thotropic homogeneous plates stiffness terms specialise in the form

Ai ¼ Eihi=ð1� mxzi mzxi Þ; Di ¼ Eih3i =½12ð1� mxzi mzxi Þ�; Bi ¼ 0; A	
i ¼ 5=6Gxy

i hi; ð10Þ

where Ei is the Young moduli along the x-axis; mxzi , m
zx
i , the Poisson’s ratios along the x–z and z–x directions;

Gxy
i , the shear modulus.

Fig. 2. Sublaminate configuration at a generic stage of delamination showing local co-ordinate systems and external loading.
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3. Governing equations

Equilibrium equations at a generic stage of the quasi-static delamination and bridging growth, will be
derived through the stationarity condition of a penalised total potential energy for unit width of the system
sketched in Fig. 2, which assumes the form

Pk ui;wi;wið Þ ¼
X2
i¼1

Z L

0

Ui ui;wi;wið Þ½ �dxþ
Z L

a
Kdxþ

Z a

0

U dx�
X2
i¼1

F i 
 u0i ; ð11Þ

where Ui is the strain energy density of the ith sublaminate

Ui ui;wi;wið Þ ¼ 1
2
Aiu02i
h

þ 2Biu0iw
0
i þ A	

i wi

�
þ w0

i

�2 þ Diw
02
i

i
; ð12Þ

K indicates the strain energy of the undelaminated interface

K ¼ 1
2
k Dw2
�

þ Du2
�
; ð13Þ

expressed in terms of the relative opening and sliding interface displacements

DwðxÞ ¼ w2ðxÞ � w1ðxÞ;

DuðxÞ ¼ u1ðxÞ �
h1
2

w1ðxÞ � u2ðxÞ
�

þ h2
2

w2ðxÞ
�
;

ð14Þ

the third integral is the energy dissipation of the bridging mechanism and the last term is the work done by
the applied loads defined by the following relations

F i ¼ f � Ni;�Mi;� TigT; u0i ¼ ui 0ð Þ;wi 0ð Þ;wi 0ð Þf gT: ð15Þ

Note that the strain energy of the linear interface assumes the form of a penalty functional which imposes
the interface adhesion constraint, the interface stiffness k being the penalisation parameter. Moreover, in
(11) the subscript k denotes dependence on the penalty parameter.

The first variation of (11) results in

X2
i¼1

Z L

0

Ni du0i
h

þMi dw0
i þ Ti d wi

�
þ w0

i

�i
dxþ k

Z L

a
DwdDwð þ DudDuÞdx

þ
Z a

0

ryy dDw
�

þ ryx dDu
�
dx�

X2
i¼1

F i 
 du0i ¼ 0; ð16Þ

valid for every kinematically admissible displacements, and after integration by part furnishes the equi-
librium equations together with the boundary and interior stress compatibility conditions at a generic stage
of delamination evolution. Note that in this equilibrium configuration normal and tangential bridging
tractions, expressed as a function of interface separations through Eq. (5), may act along different lengths
byy and byx, respectively. The equilibrium solution satisfying (16) is not a minimum for the functional in Eq.
(11) since the bridging potential U for the linear softening law considered here, is not a strictly convex
function in the convex set C ¼ fDw > 0g, that is the following relation

UðDÞ � Uð�DDÞ � oU
oD

ð�DDÞðD � �DDÞ > 0 8D; �DD 2 C with D 6¼ �DD;

does not hold, and uniqueness is not in general to be expected. For different bridging laws characterised by
a strictly convex potential the equilibrium solution is a minimum and uniqueness is guaranteed.
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In deriving equilibrium equations, for convenience in later calculations and without affecting the gen-
erality of the analysis, assume that the sublaminates are symmetric about their midplane and have the same
geometrical and mechanical properties (i.e. A1 ¼ A2 ¼ A, D1 ¼ D2 ¼ D, B1 ¼ B2 ¼ 0 and A	

1 ¼ A	
2 ¼ A	).

With these assumptions the boundary value problems governing relative opening and sliding interface
displacements Dw and Du, can be solved analytically. Obviously, generalisation to different sublaminates
properties can be made without significant modifications, but the proposed equations are anyway able to
show the main features of the delamination and bridging problem.

When the delamination leads to two sublaminates with different geometrical and mechanical properties,
the governing equations become more complex and coupled in the opening and sliding interface dis-
placements Dw and Du. In principle, the problem admits an analytical solution similar to that of the
simplified symmetric problem. The asymmetric delamination scheme should be useful, for example, to
analyse the influence of residual stresses due to thermal effects. In this case free thermal strains should be
introduced in constitutive relations (9), and in the total potential energy (11) the work of residual stresses
should be included.

With clamped end condition for the whole laminate, equilibrium equations, boundary and interior
compatibility conditions at common sections for stress resultants, respectively, for the opening interface
separation function DwðxÞ can be put in the following form

A	ðDw0 þ Dw00Þ � 2ryy ¼ 0;

A	 Dw þ Dw0� �
� DDw00 ¼ 0;

(
ryy ¼ r0

yy �
r0yy
Dw0 Dw; 06 x < byy ;

kDw; byy 6 x < L� aþ byy ;

(

Dw0ð0Þ þ Dwð0Þ ¼ T2�T1
A	 ; Dw0ð0Þ ¼ M2�M1

D ;

DwðL� aþ byyÞ ¼ 0; DwðL� aþ byyÞ ¼ 0;

(

Dw�ðbyyÞ ¼ DwþðbyyÞ; Dw�ðbyyÞ ¼ DwþðbyyÞ;
Dw0�ðbyyÞ ¼ Dw0þðbyyÞ; Dw0�ðbyyÞ þ Dw�ðbyyÞ ¼ Dw0þðbyyÞ þ DwþðbyyÞ;

(
ð17Þ

where the origin of the x-axis is assumed to coincide with the right edge of the length byy along which
normal bridging tractions act (see Fig. 3a), D has the usual meaning of difference between variables relative
to the lower and upper sublaminate and superscripts þ or � denote that the relevant function is evaluated
at the delamination front x ¼ bþyy or x ¼ b�yy , respectively. The stress resultants appearing in (17) are eval-
uated at the cross-sections located at the origin of the x-axis and the opening displacement along the
bridged zone byy is assumed strictly positive.

Analogously, the sliding interface separation function defined as

DuðxÞ ¼ u1 � u2 þ h=2ðw1 þ w2Þ; 06 x6 L� aþ byx;

Fig. 3. Local co-ordinate system for (a) interface opening displacement function DwðxÞ and (b) interface sliding displacement function

DuðxÞ.
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is governed by the following equations

ADu00 � ryx 2

�
þ Ah2

2D

�
� Ah
2D

T1ð þ T2Þ ¼ 0; ryx ¼
r0
yx

Du
Duj j �

r0yx
Du0 Du; 06 x < byx;

kDu; byx 6 x < L� aþ byx;

(

Du0ð0Þ ¼ h M2þM1

2D þ N1�N2

A ;

DuðL� aþ byxÞ ¼ 0;

(
Du�

0ðbyxÞ ¼ Duþ
0ðbyxÞ;

Du�ðbyxÞ ¼ DuþðbyxÞ;

( ð18Þ

where, in this case, the origin of the x-axis is assumed to coincide with the right edge of the length byx along
which tangential bridging tractions act (see Fig. 3b), superscripts þ or � have the above introduced
meaning and the stress resultants are evaluated at the cross-sections located at the origin of the x-axis. Note
that the sum of shear resultants T1 and T2 is constant.

A complete kinematics description of the mode II variables is obtained by adding to Eq. (18) the fol-
lowing equation for the sum of sublaminate section rotations

P
w ¼ w1 þ w2:

D
X

w00 � T1ð þ T2Þ � ryxh ¼ 0; ryx ¼
r0
yx

Du
Duj j �

r0yx
Du0 Du; 06 x < byx;

kDu; byx 6 x < L� aþ byx;

(
P

wðL� aþ byxÞ ¼ 0;P
w0ð0Þ ¼ M1þM2

D ;

(
Dw�0ðbyxÞ ¼ Dwþ0ðbyxÞ;
Dw�ðbyxÞ ¼ DwþðbyxÞ;

( ð19Þ

The limit for k ! 1 of the sequence of solutions of the piecewise linear multipoint boundary value
problem, decoupled in Dw and Du, defined by Eqs. (17)–(19), furnishes equilibrium configurations at an
intermediate stage of delamination evolution (i.e. for fixed delamination and bridging lengths). Eqs. (17)
govern delamination evolution under mode I condition while Eqs. (18) and (19) refer to mode II condition.
In numerical calculations k must be sufficiently large to enhance accuracy but relatively small to avoid
badly conditioning of the problem.

The very high value of the interface stiffness coefficient k adopted in numerical calculations is of order
106 N/mm3. Convergence studies performed, have shown that the above estimate for k is suitable to ensure
accuracy of adhesion constraint and to avoid numerical instabilities. On the other hand, the choice of the
interface stiffness could be made by means of physical considerations. As a matter of fact, the elastic in-
terface with a large value of k is equivalent to an adhesive layer whose thickness is sufficiently small. Thus,
within the common values for elastic moduli of composite materials, the adopted value for k corresponds to
an equivalent layer thickness of about 10–20 times smaller than sublaminate thickness. More details about
the problem of an optimal interface stiffness choice and of energy release rate convergence in the penalty
procedure, can be found in Bruno and Greco (2001b).

Constructing the monotonic growth of delamination and bridging requires the following incremental
growth conditions:

GI þ kGII ¼ Gc
I ; da > 0;

Dwð0Þ ¼ Dw0; dða� byyÞ > 0;
Duð0Þ ¼ Du0; dða� byxÞ > 0;

8<
: ð20Þ

where in the first equation, the delamination criterion, k is a parameter calibrating the influence of mode II
in the delamination criterion (Hutchinson and Suo, 1992), Gc

I is the critical mode I fracture energy, the
second and third equation is the opening and sliding bridging fronts propagation conditions, respectively,
and d denotes an infinitesimal increment in the relevant quantity.
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4. Energy release rate modelling and fracture mechanics

In this section the energy release rates modelling is discussed by comparing the proposed interface ap-
proach, to fracture mechanics results. Within the fracture mechanics context, both the global energy bal-
ance (Griffith criterion) and the J-integral approach are taken into account emphasising the consistency
between the present model and fracture mechanics theory. It will be shown that the considered global
fracture mechanics approaches do not determine mode partition of energy release rate, whereas the pro-
posed model provides a direct mode partition. On the other hand, the global methods are able to provide
useful analytical formulas for the energy quantities governing the problem, in terms of stress resultant
discontinuities.

For the delamination case without including bridging effects, the global energy approach was utilised in
Bottega (1983) in a variational setting and in Stor�aakers and Andersson (1988) by a direct derivation of the
potential energy, and was applied in Cochelin and Potier-Ferry (1991) by also introducing a modification
due to the inclusion of shear terms arising from the Mindlin plate model. If a single plate is utilised to model
the undelaminated portion of a laminate, as in the above cited references, also if accounting for shear
deformability, the contribution of shear on energy release rate is generally small. Applying the energy
approach to the present model, points out that the effects of shear deformability are captured in a more
realistic way if a layer-wise kinematics model is adopted, since the local delamination tip strain state is
better described.

The same conclusions are obtained with the J-integral approach (Suo et al., 1992) which will be applied
to compute useful analytical formulas for the energy quantities involved in the analysis.

4.1. The global energy approach

With G representing energy release rate for unit surface, _aa the velocity of a point located at the del-
amination front, the point standing for partial differentiation in a time-like parameter, the energy balance at
an intermediate stage of quasi-static monotonic delamination under dead loads is

G _aa ¼ � d

dt
P ui;wi;wið Þ; ð21Þ

where ðd=dtÞP is the velocity of the total potential energy (11) evaluated along equilibrium solutions, in the
limit for k ! 1, namely

P ¼ lim
k!1

Pk: ð22Þ

The qualitative behaviour of strain energy and interlaminar stresses is shown in Fig. 4. The figure shows
that the total potential energy contains a discontinuity point at the delamination front since in the limit
k ! 1 the linear interface strain energy density vanishes over the bonded interface length, a < x6 L, except
at the delamination front x ¼ a, where it generally approaches to a finite value representing the energy
release rate. This is due to the singular limit behaviour of the delamination front interlaminar stresses
which, with exception for terms approaching infinity slower, approach infinity with the order Oðk1=2Þ as
k ! 1, while the corresponding interlaminar separations Du and Dw are of order Oðk�1=2Þ within terms
approaching zero slower (Bruno and Greco, 2001a,b). On the other hand, along the undelaminated in-
terface (a < x6 L) interlaminar stresses remain bounded while interface separations approach zero as
k ! 1:

Note that in the limit as k ! 1 interlaminar stresses reconstruct the distributed Lagrange multipliers
along a < x6 L and concentrated Lagrange multipliers at the delamination tip which reflect the singular
behaviour of crack tip interlaminar stresses (see Fig. 5). Thus the external work in the total potential energy
must include the contribution arising from point Lagrange multipliers applied at the delamination tip
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X2
i¼1

Ri 
 uti ; ð23Þ

where point Lagrange multipliers and displacement vectors at the delamination tip, are defined in Appendix
A.

Fig. 4. Qualitative limit behaviour as k ! 1 of interface strain energy density, interlaminar stresses, bridging potential and interface

separations.

Fig. 5. Delamination front element: point Lagrange multipliers reflecting singular interlaminar stresses and section rotations.
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From (21) it follows that

G ¼ 1

2

X2
i¼1

sNiu0i þMiw
0
i þ

T 2
i

A	
i
� 2Tiwit; ð24Þ

which specialises to

G ¼ 1

2

X2
i¼1

sN 2
i

Ai
þM2

i

Di
þ T 2

i

A	
i
� 2Tiwit; ð25Þ

when Bi ¼ 0. The double bracket s 
 t in Eqs. (24) and (25) indicates the jump of the enclosed quantity
across a evaluated as f � � f þ, namely the difference between the variable at x ¼ a� and aþ. Details about
analytical manipulations leading to Eqs. (24) and (25) can be found in Appendix A.

Alternatively, G can be evaluated by means of a penalised procedure as

G _aa ¼ lim
k!1

� d

dt
Pk ui;wi;wið Þ: ð26Þ

The main difference between the current procedure and the previous one is that in the penalised formulation
(26) no stress discontinuity arises at the delamination front, since for finite values of k the adhesion con-
straint at the interface between the two sublaminates is not perfectly satisfied.

Similar arguments that conduced to Eq. (24) leads to

G ¼ � lim
k!1

sK þ Ut ¼ lim
k!1

1

2
kDw2

�
þ 1

2
kDu2

�
; ð27Þ

which proves the connection between fracture mechanics and the interface approach. Details about the
procedure based on Eq. (26) can be found in Appendix A.

It can be noted that G contains in addition to standard shear terms T 2
i =A

	
i coupling terms related to the

quantity Tiwi which may have a notable influence in energy release rate (Bruno and Greco, 2001a). These
terms do not appear in models currently used in literature (for an account of these models see, for instance,
Allix and Corigliano (1996)) and shear effects are frequently circumscribed only to T 2

i =A
	
i terms. As a matter

of fact, if the sublaminates are modelled as one plate element it is easy to show that equations formally
equal to Eqs. (24) and (25) can be found: in this case, however, terms like Tiwi cancel each other due to the
assumption of continuity of the section rotation wi across the interface and due to equilibrium require-
ments.

Utilising the above energy balance during the monotonic advance of delamination leads to emphasising
that the coupling terms arise from the delamination front localised discontinuity in stress resultants, which
reflect the singular behaviour of interlaminar stresses, and emerge only when section rotation wi is allowed
to be discontinuous across the interface (see, for instance, Fig. 5).

4.2. The J-integral approach

Now we briefly follow an alternative route for delamination analysis: the J-integral approach. Let us
consider the plate system in Fig. 6, the J-integral conservation provides

JðC3Þ þ JðC2Þ ¼ Jext � Jb ¼ G; ð28Þ

where Jext is evaluated along any contour starting from the upper crack surface and ending on the lower
crack surface enclosing the bridged zone which by virtue of path-independent properties is equal to JðC3Þ
and Jb is the J-contribution of the bridging mechanism JðC2Þ.
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In Fig. 6, the segment C1 has a vanishingly small radius and the corresponding path–integral represents
the energy release rate available at the crack tip for crack advance with the minus sign �G, the segment C2

runs along the upper and lower bridged crack surfaces y ¼ 0þ and 0�, respectively, and the segment C3

traverses the crack faces out of the bridging zones.
Evaluating the J-integral along a path like C1 and C3 with vertical segments behind and ahead of the

delamination tip and with stresses and deformations of the proposed laminate model leads to

J ¼ � 1

2

Z
C

rxxu0
�

þ rxy w0�
þ w

��
dy þ

Z
C

rxyw
� �

dy; ð29Þ

which for C1 specialises to an energy release rate expression equal to that obtained in Eq. (24). Specific
details about the previous J-integral application can be found in Appendix B.

Considering now the symmetric sublaminates case, the J-integral approach or, equivalently, the energy
approach by appropriate definition of equivalent loading systems through Eqs. (17) and (18), are able to
provide solutions for mode I and mode II energy release rates. Equivalent mode I and mode II loading
systems are schematised in Fig. 7.

Applying (29) to the mode I scheme returns

Jext ¼
M1 �M2ð Þ2

4D
þ T1 � T2ð Þ2

4A	 þ T1 � T2
2

Dwð0Þ �M2
I

D
;

Jb ¼ r0
yy D�ww�

r0
yy D�ww2

2Dw0
;

G ¼
M1 �M2ð Þ2tip

4D
þ

T1 � T2ð Þ2tip
4A	 þ

T1 � T2ð Þtip
2

DwðbyyÞ �
M2

I

D
;

ð30Þ

Fig. 6. Paths for J-integral evaluation in a bridged delaminated plate.

Fig. 7. Equivalent loading systems for mode I and mode II subproblems.
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where Dwð0Þ and DwðbyyÞ denote the relative rotation at the opening bridging and delamination front,
respectively, and the subscript ‘tip’ indicates that the relevant quantity is taken at the delamination tip.
Moreover, the vertical segment behind the delamination front is supposed at the clamped end and by
continuity it can be noted that TI vanishes.

Analytical solutions for L� a ! 1 (Bruno and Greco, 2001a) show that

lim
ðL�aÞ!1

G ¼ lim
k!1

ðL�aÞ!1

1

2
kDw2 ¼

M1 �M2ð Þ2tip
4D

þ
T1 � T2ð Þ2tip

4A	 þ
T1 � T2ð Þtip

2

M1 �M2ð Þtipffiffiffiffiffiffiffiffiffi
A	D

p ; ð31Þ

since the relative rotation DwðbyyÞ is M1 �M2ð Þtip=ðA	DÞ1=2. The third term couples bending and shear re-
sultants at the delamination tip and results in a notable effect since the ratio between the shear and coupling
term is proportional to Th=MðExx=GxyÞ1=2. Note that the proportionality factor may be less than unity
because a high ðExx=GxyÞ1=2 ratio may be compensated by a very low Th=M value.

For the mode II scheme we have:

Jext ¼
M1 þM2ð Þ2

4D
þ N1 � N2ð Þ2

4A
þ ðT1 þ T2Þ½wðbyxÞ � wð0Þ� � N 2

II

A
�M2

II

D
;

Jb ¼ r0
yxjD�uuj �

r0
yx D�uu

2

2Du0
;

G ¼
3 M1 þM2ð Þ2tip

16D
þ

N1 � N2ð Þ2tip
16A

þ
3 M1 þM2ð Þtip N1 � N2ð Þtip

4Ah
:

ð32Þ

Note that no shear terms are contained in the energy release rate: this follows from antisymmetrical and
equilibrium requirements. As a matter of fact the second term in (29) vanishes due to vertical equilibrium
while the third term vanishes due to equilibrium and continuity of rotation across the interface.

The previous analysis has shown that, except for particular cases (i.e. symmetrical sublaminates), the
energy and J-integral approaches do not separate energy release rate: to do this, a local post-processing of
the equilibrium solution is needed and, for instance, the virtual crack closure method can be employed. We
will not follow this kind of analysis since the objective here is to emphasise the effectiveness of the interface
approach, which provides directly mode partition without the need of a post-processing.

5. Numerical solution procedure

The second-order boundary value problem defined by Eqs. (17) and (18), at a generic stage of delam-
ination growth (i.e. for a fixed delamination length), defines a sequence of equilibrium configurations
generated by the interface stiffness variation, and can be analytically solved by casting it in the form of a
non-homogeneous first-order differential system:

y0k ¼ Fkyk þ d; ð33Þ
where the subscript k denotes explicit dependence on the penalty parameter k; yk ¼ fyI; yIIgT is a vector
collecting in two subvectors yI and yII, the displacement functions relative to mode I and mode II boundary
value problems, respectively; Fk is the linear operator associated with the differential system and d is a non-
linear vector.

Assume that during a load path the interface sliding displacement function does not change its sign along
the sliding bridging length: with this hypothesis the system (33) can be solved as a linear system. The hy-
pothesis is reasonable and will be justified in our examples. General solutions of (33) can be put in the form

yk ¼ ciuiekix; i ¼ 1; . . . ; 12; ð34Þ
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where summation by repeated indices is implied and where (ki; ui) are eigencouples of the eigenproblem

Fku ¼ kiu:

The constants ci appearing in Eq. (34) are extracted by using boundary and interior compatibility condi-
tions contained in (17) and (18), which by using (33) result in the following linear system

Bkck ¼ t; ð35Þ
where the vector ck collects the constants ci, Bk is a matrix whose components contain an opportune
combination of the components of the eigenvectors ui and tk is vector collecting boundary values. Details
on the analytical solution of Eq. (33) can be found in Appendix C.

Due to the above analytical solution, delamination evolution in the laminated plate containing an ini-
tial defect a0 can be numerically simulated by reducing the non-linear differential problem with moving
boundary conditions to a non-linear algebraic system, which must be solved for a monotonic increase of the
delamination length a. The monotonic increase of delamination length is obtained by finite increments Da.
The essential steps of the adopted incremental procedure are shown in Fig. 8, whereas specific details can be
found in Appendix C.

6. Results and discussion

At first, delamination examples under pure mode I and mode II loading condition will be considered to
point out the salient features involved in the delamination evolution problem. After, mixed-mode examples
will be considered to show more realistic results. Comparisons between the classical delamination models
and the proposed model show that the latter provides a more accurate resistance prediction in comparison
to the former models: the better description of the local crack tip strain state, in fact, leads to capturing
more realistically the effect of shear deformability on delamination growth behaviour. In the following
numerical calculations, parameters are chosen in order to focus on the influence of the delamination model
on delamination behaviour prediction.

6.1. Mode I case

In Fig. 9 resistance curves in terms of the conventional dimensionless energy release rate

GI ¼
G

r0
yy Dw0

¼ P 2a2

r0
yy Dw0D

;

namely evaluated without considering bridging and shear deformability, are plotted versus the delamina-
tion length a for a mode I delamination scheme loaded by two end forces for unit width P (the classical
double cantilever beam scheme). The sublaminates are made of specially orthotropic homogeneous plates
and the following geometrical and mechanical parameters are considered

h ¼ 1:5 mm; Ex ¼ 130; 000 MPa; mxz; mzx ¼ 0:15; r0
yy ¼ 5 MPa; Dw0 ¼ 0:05 mm;

which are assumed to be representative of a typical laminate subjected to fibre bridging (for order of
magnitude of bridging law parameters see Bao and Suo (1992)). Two different values of the mode I critical
energy release rate are considered to show the influence of the fracture energy on delamination analysis.

Three models are considered in Fig. 9: the proposed delamination model and two classical delamination
models. According to the former (referred to as classical model 1 in Fig. 9) the undelaminated portion of
the plate is modelled by means of a unique plate element and the laminate is considered as an assembly of
three plates for which the Kirchhoff plate theory is adopted. The latter classical model (referred to as
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classical model 2 in Fig. 9) includes shear deformability in the plate elements according to the Reissner–
Mindlin kinematics. Bridging tractions acting along the delaminated region of the interface, are modelled
by means of the softening two-parameter law introduced in Section 2.1.

In Fig. 9 the symbol ‘I’ denotes the initiation of the bridging creation phase (or initiation of delamination
growth), while ‘II’ indicates that of the bridging transport phase. It can be noted that the classical del-
amination models approach to an asymptotic steady state resistance value at which bridging length
practically propagates at a constant length:

GI ss ¼
Gc

I

r0
yy Dw0

þ 1

2
: ð36Þ

Fig. 8. Schematic drawing of the solution procedure.
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The steady state value in Eq. (36) is obtained by applying the J-integral as described in Section 4.2 to the
classical delamination model without shear deformability, in the limit as the ratio between the delamination
length and the bridging length a=byy approaches infinity. On the other hand, the proposed delamination
model may approach a steady state asymptotically only if the laminate length is sufficiently long, but in
proximity to clamped end a phenomenon of increase in resistance is shown. This can be ascribed to the
effect of constrained warping of the transverse section which causes a decrease in energy release rate
available for delamination growth.

In Fig. 9, near to the resistance curves, the corresponding bridging curves are plotted showing the
evolution of bridging lengths as the delamination advances. From Fig. 9, the marked effect of shear de-
formability both on the load at the initiation of the bridging creation phase (I) and on the load at the
beginning of bridging transport phase (II) can be noticed. As a matter of fact, bending–shear coupling
terms play an important role in energy release rate evaluation and, consequently, on resistance curve
providing a more accurate resistance prediction. This can be also noted from Eq. (30) which contain both
pure and coupling shear terms. Moreover, resistance overestimation increases with the critical value of
energy release rate Gc

I.
The comparison between the three models shows that the actual influence of shear deformability on

delamination growth behaviour is captured only if the proposed delamination model is utilised. On the
other hand, the use of a classical delamination model leads to an underestimate of the delamination re-
sistance and the accuracy in delamination analysis is not largely increased also if shear deformability is
accounted for (classical model 2).

6.2. Mode II case

A typical mode II scheme (the end loaded split) is considered in Fig. 10, where resistance curves in terms
of the conventional dimensionless energy release rate

Fig. 9. Mode I example. Resistance and bridging curves as the delamination extends: comparison between the proposed model and the

classical delamination models for different values of the fracture energy.
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GII ¼
G

r0
yy Dw0

¼ 3P 2a2

16r0
yy Dw0D

;

are plotted versus the delamination length a together with the corresponding bridging curves. The following
geometrical and mechanical parameters are considered

h ¼ 1:5 mm; Ex ¼ 130; 000 MPa; mxz; mzx ¼ 0:15; r0
yx ¼ 5 MPa; Du0 ¼ 0:05 mm:

As for the mode I case, two different values of the mode I critical energy release rate are considered to show
the influence of the fracture energy on delamination analysis and the proposed model is compared to the
classical delamination models. In Fig. 10 the meaning of classical model 1 and 2 is the same as that utilised
in Fig. 9.

Since in this particular case the influence of shear deformability on delamination analysis is negligible as
it is shown by Eq. (32), both the classical delamination and the proposed models tend towards the following
asymptotic steady state resistance:

GII ss ¼
Gc

II

r0
yx Du0

þ 1

2
: ð37Þ

In this case, the resistance prediction obtained by the three models are practically the same and no resis-
tance overprediction results.

6.3. Mixed mode case

In Fig. 11, a mixed mode example is considered. The asymmetric end loaded split scheme is considered
and resistance curves in terms of the conventional global energy release rate

Fig. 10. Mode II example. Resistance and bridging curves as the delamination extends: comparison between the proposed model and

the classical delamination models for different values of the fracture energy.
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G ¼ G
r0
yy Dw0

¼ 7P 2a2

16r0
yy Dw0D

;

are plotted versus the delamination length. For the common geometrical and mechanical parameters, the
same values utilised in the mode I case are considered, whereas the remaining values are shown in Fig. 11.

In Fig. 11, ‘I’ denotes the initiation of the bridging creation phase, ‘II’ and ‘III’ indicate the initiation of
the normal and shear bridging transport phase, respectively. The classical delamination models approach to
the following asymptotic steady state resistance:

Gss ¼
14

11

GI
c

r0
yy Dw0

 
þ 1

2
þ 1

2
k

r0
yx Du

0

r0
yy Dw0

!
: ð38Þ

Due to constrained warping, the proposed model shows an increase in resistance as in the mode I case, and
no steady state is reached asymptotically. The bridging curves plotted near the resistance curves in Fig. 11,
also confirm this. As in the mode I case, a notable overestimation in resistance prediction arises if classical
delamination models are adopted, and the resistance overestimation increases with the critical value of
energy release rate Gc

I . Both the classical delamination model (referred to as classical model 1) adopting the
Kirchhoff plate theory and the classical delamination model (referred to as classical model 2) including
shear deformability, are considered in Fig. 11. The inaccuracy in resistance prediction, is due to the notable
underestimation in mode I energy release rate as it has been shown in Section 4: if a classical delamination
model is utilised, in fact, shear effects are not actually captured.

Fig. 11. Mixed mode example. Comparison between classical models and proposed delamination model in terms of resistance and

bridging curves.
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7. Finite element validation

In order to validate the proposed model, comparisons with FE analyses based on a 2D continuum
modelling, are proposed. The FE delamination analysis utilises 2D continuum plane strain elements and
damage interface elements placed at the potential plane of interface debonding. Standard eight-node plane
strain quadratic rectangular elements and 2D quadratic interface elements are used. Damage interface
elements simulate the opening and sliding fracture modes by means of a three-parameter damage law (see
Fig. 12). The constitutive law of interface elements for mode I (mode II) of fracture, defined in terms of the
relative displacement at the interface, is assumed to be linear elastic until the stress reaches a threshold value
rt
yy (rt

yx), then the stress is reduced linearly until the relative displacement reaches the failure value Dw0

(Du0). The relative opening displacement at which the material still behaves as linear elastic is eI0 (e
II
0 ). Thus

interface element constitutive relationship for mode I (mode II) is defined by means of the three parameters
rt
yy , Dw

0, eI0 (r
t
yx;Du

0; eII0 ). The softening portion of the damage interface law corresponds to the process zone
of the bridging stresses.

The analytical delamination model generates various regularised models by choosing a finite value of the
penalty parameter: thus by appropriate specialisation of the proposed interface model, which essentially is a
four-parameter damage law, the FE damage model may be reproduced (Fig. 12). For the mode I case, the
following relations can be used to specialise the analytical interface model to the FE damage model:

r0
yy ¼ rt

yy þ
rt
yy

Dw0 � eI0
eI0; k ¼

rt
yy

eI0
; GI ¼

1

2
keI

2

0 ;

and analogous relations can be utilised for the mode II case.
The numerical model utilises a non-linear incremental analysis strategy in which the arc length procedure

(Crisfield, 1983) is adopted and convergence on the residual norm is selected. To follow the very unstable
load deflection profile during progressive delamination, in the arc length procedure the root with the lowest
residual force is selected. For the plane strain elements a fine integration scheme (3� 3 G rule) is invoked
and to avoid convergence difficulties, related to stress intensification near the delamination front, a suffi-
ciently fine meshing is utilised. The FE computations were performed by using the FE code LUSAS, li-
censed from FEA Ltd.

The FE model is used here to analyse pure mode delamination examples, since for mixed mode cases the
damage law of the numerical model is not able to reproduce the analytical interface model, the latter being
uncoupled for the softening portion due to bridging and coupled for the elastic portion related to matrix

Fig. 12. Three-parameter delamination interface FE model: comparison with the proposed interface model.
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failure. However it is reasonable to think that validation of the pure mode results obtained by the analytical
model, are sufficient to substantiate the proposed model, the mixed mode case being derived, essentially,
from superimposition of the pure mode cases.

At first the mode I loading case is considered by analysing a double cantilever scheme: note that the
mode I case is a main point in substantiating the proposed model being strongly influenced by shear effects.
Both deformed meshes of the delamination modelling, and the load–deflection graph for the FE model and
the proposed model, are shown in Fig. 13. The following parameters were chosen for the analysis:

Ex ¼ 130; 000 MPa; mzx ¼ mxy ¼ myz ¼ 0:15; rt
yy ¼ 30 MPa; Dw0 ¼ 0:05 mm; eI0 ¼ 0:002;

L ¼ 70 mm; h ¼ 1:5 mm:

Fig. 13 shows a good agreement between the analytical and the FE model, confirming that the analytical
model captures accurately the delamination growth behaviour. Furthermore, in Fig. 13 the undeformed
mesh and two deformed meshes, corresponding to the initiation of the bridging creation phase (I) and of the
bridging transport phase (II) respectively, are reported. Note that the phenomenon of increase in resistance
shown by the analytical model is confirmed also by the FE model.

The same agreement is found in Fig. 14, where both mode I and mode II cases are considered in terms of
load–delamination curves. The mode I case refers to a double cantilever scheme, whereas the mode II
example to an end loaded split scheme. The following data are utilised:

Ex ¼ 130; 000 MPa; mzx ¼ mxy ¼ myz ¼ 0:15; rt
yx ¼ rt

yy ¼ 10 MPa; Dw0 ¼ Du0 ¼ 0:01 mm;

eI0 ¼ eII0 ¼ 0:0056; L ¼ 70 mm; h ¼ 1:5 mm:

It is worth noting that the analysis developed by means of the FE model was very expensive with regard to
computation time, due to the large number of evaluated load increments, whereas the analysis relative to
the proposed analytical model requires a low computational cost.

Fig. 13. (a) Load–deflection curves: comparison between analytical and FE model. (b) Typical undeformed mesh and deformed mesh

at the initiation of the bridging creation (I), at the beginning of the bridging transportation phase (II). Details about meshing size are

also shown.
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As a matter of fact, the FE non-linear analysis for the mode I case, took up to 30 min in evaluating 140
load increments, whereas the proposed analytical model took up to 5 min for 180 load increments of the
delamination length. For the mode II case, the FE analysis took up to 25 min in evaluating 145 load in-
crements, whereas the proposed model took up to 4 min for 180 load increments of the delamination length.
The calculation were performed on a personal computer (CPU 600 MHz).

Moreover, the delamination model for both mode I and mode II cases utilises rectangular elements
whose size D1=h is equal to 0.44 along the initial undelaminated portion and of size D2=h equal to 4 along
the initial delaminated portion, where D1 and D2 are the lengths of the elements (see Fig. 13b). The 2D
interface mesh uses 30 divisions as shown in Fig. 13b. Mesh refinement studies revealed that the above mesh
discretisation is sufficiently fine to avoid convergence difficulties and to capture accurately stress behaviour
near the delamination front.

8. Conclusions

An analytical approach, based on a first-order shear deformable layer-wise plate model in which
interface elements are introduced to simulate delamination and fibre bridging stresses, is proposed to
investigate the delamination behaviour of a laminated plate experiencing bridging effects. An initially
penalised and subsequently damageable interface law introduces a cohesive delamination model which
admits crack tip stress singularity, and provides a direct and self-consistent method to determine energy
release rate and its mode partition. Governing equations, derived through a variational procedure, result
in a non-linear differential system with moving intermediate boundary conditions, which must be solved in
conjunction with appropriate delamination and bridging growth conditions. Under reasonable assump-
tions, an analytical solution procedure is proposed which reduces the delamination problem to a sequence
of non-linear algebraic systems.

The relations between the proposed interface model and fracture mechanics are investigated through
applications of the global energy balance and of the J-integral approach, pointing out the role which the
plate model plays for an actual evaluation of the main quantities governing the problem.

Fig. 14. Resistance curves: comparison between the proposed model and the FE model for mode I and mode II cases.

2456 F. Greco et al. / International Journal of Solids and Structures 39 (2002) 2435–2463



Results obtained with reference to pure and mixed mode delamination and bridging examples, show that
the proposed model, providing a better description of the local crack tip strain state, generates more ac-
curate results in comparison with simplified delamination models widely used in literature. Comparisons
with FE analyses utilising a 2D continuum formulation and damage interface elements, in fact, substantiate
the accuracy of the present approach for a regularised version of the proposed interface model. Conse-
quently, the analytical model here proposed, in spite of its low computational cost, is a useful tool to predict
accurately the delamination and bridging behaviour of a laminated plate.

Finally, the main conclusion of the paper is that the analytical approach here proposed is able to capture
effectively the interlaminar resistance behaviour of a laminated plate, avoiding the notable underestimation
of the actual resistance obtained with simplified delamination models. Moreover, due to its analytical
treatment, it provides a better understanding of some important aspects of the complex delamination and
bridging problem, highlighting the main quantities affecting the interlaminar damage problem.

The paper is principally devoted to the calculation of resistance curve from a theoretical bridging law by
using a refined delamination model. Nevertheless, if the inverse problem of bridging law evaluation from
experimental resistance curve is considered, it is worth noting that the measure should be affected strongly
by the adopted delamination model. This is particularly evident if the bridging law is evaluated by fitting
the computed R-curves to measured R-curves: the bridging law parameters should be more accurate if
evaluated by using the proposed model instead of a classical delamination model, since the proposed model
provides a better prediction of interlaminar stresses through an accurate modelling of shear effects.

Although the analysis is referred here to one-dimensional delamination problems, thus allowing for an
analytical treatment, results, in principle, can be extended, by using numerical solution methods, in cases
where the delamination may have an arbitrary shape. In this context, the present analysis can be helpful to
interpret more complex numerical approaches.

Appendix A

The point Lagrange multipliers (see Fig. 5) and displacement vectors at the delamination tip introduced
in Eq. (23), are defined as

R1 ¼ Rx;Ry ;Rxh1=2
� �T

; ut1 ¼ ut1;w
t
1;w

t
1

� �T
;

R2 ¼
�
� Rx;� Ry ;Rxh2=2

�T
; ut2 ¼ ut2;w

t
2;w

t
2

� �T
:

ðA:1Þ

Details about the procedure leading to Eqs. (24) and (25) are shown in the following. Using the standard
rules for the time rate of an integral over the fixed region R ¼ ½0; L� containing a moving discontinuity point
p at x ¼ a with velocity _aa,

d

dt

Z
R�a

f dx ¼
Z
R�a

_ff dxþ _aasf t;

where the double bracket s 
 t indicates the jump of the enclosed quantity across p evaluated as f � � f þ,
namely the difference between the variable at x ¼ a� and aþ, leads to the following expression for the time
rate ðd=dtÞP:

d

dt
P ui;wi;wið Þ ¼

X2
i¼1

Z L

0

_UUi dx

"
þ
Z L

a
ryy D _ww
 

þ ryx D _uu
!
dxþ

Z a

0

_UU dx�
X2
i¼1

F i 
 _uu0i �
X2
i¼1

Ri 

d

dt
uti

#

þ _aa
X2
i¼1

sUit: ðA:2Þ
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In Eq. (A.2) the term in the square bracket denotes the fixed domain rate of the corresponding quantities
while the remaining are the jumps in the flux over which strain energy densities are carried out across the
point p. The second term in square bracket denotes the work of Lagrange multipliers ryy ; ryx along the
undelaminated interface. Note that jumps in the work of Lagrange multipliers and in bridging potential
vanish: the former because it is zero at x ¼ aþ, the latter due to the continuity of U which assumes zero
value at the delamination front (see Eq. (4)).

The bracketed term in (A.2) is:

X2
i¼1

Z L

0

Aiu0i
 h

þ Biw
0
i

!
_uu0i þ Biu0i

 
þ Diw

0
i

!
_ww0
i þ A	

i ðwi þ w0
iÞð _wwi þ _ww0

iÞ
i
dxþ

Z L

a
ryyD _ww
 

þ ryx D _uu
!
dx

þ
X2
i¼1

Ni _uuið0Þ
 

þMi
_wwið0Þ þ Ti _wwið0Þ

!
�
X2
i¼1

Ri 

d

dt
uti ðA:3Þ

which after integration by part changes to

�
X2
i¼1

Z L

0

N 0
i _uui

h
þM 0

i
_wwi þ T 0

i _wwi � Ti _wwi

i
dxþ

Z L

a
ryy D _ww
h

þ ryx D _uu
i
dxþ

Z a

0

ryy D _ww
 

þ ryx D _uu
!
dx

þ
X2
i¼1

sNi _uui þMi
_wwi þ Ti _wwit�

X2
i¼1

Ri 

d

dt
uti ðA:4Þ

with the aid of essential and natural boundary conditions.
Utilising equilibrium equations, interior stress resultants compatibility conditions and taking into ac-

count that common sections between plates coincide as delamination propagates, such that the following
relations hold

d

dt
u1ðaÞ ¼

d

dt
u2ðaÞ;

d

dt
w1ðaÞ ¼

d

dt
w2ðaÞ;

d

dt
w1ðaÞ ¼

d

dt
w2ðaÞ; ðA:5Þ

the energy release rate is

G ¼
X2
i¼1

s� Ui þ Niu0i þMiw
0
i þ Tiw0

it: ðA:6Þ

In particular, interior stress resultant compatibility conditions are

sN1t ¼ Rx; sN2t ¼ �Rx;
sT1t ¼ Ry ; sT2t ¼ �Ry ;
sM1t ¼ Rxh1=2; sM2t ¼ Rxh2=2:

ðA:7Þ

Obtaining Eq. (A.6) requires the following differentiation rule for a function at the delamination front

d

dt
f ða; tÞ ¼ _ff þ _aa

o

oa
f : ðA:8Þ

After some manipulations from (A.6) Eqs. (24) and (25) are obtained.
The alternative procedure for the evaluation of G expressed by Eq. (26), is now considered in more

contents. The explicit expression of the total potential energy Pk appearing in Eq. (26) is

d

dt
Pk ui;wi;wið Þ ¼

X2
i¼1

Z L

0

_UUi dx

"
þ
Z L

a

_KKdxþ
Z a

0

_UU dx�
X2
i¼1

F i 
 _uu0i

#
þ _aasK þ Ut: ðA:9Þ
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Note that in this case the two sublaminates are not perfectly connected along the interface for a finite
value of k and consequently no stress resultants discontinuity arises at the delamination front. Thus the
jumps in strain energy density and the work of delamination tip Lagrange multipliers are not present in Eq.
(A.9). The jump in the strain energy of the undelaminated interface reduces only to the value of K at x ¼ aþ

(with the minus sign), whereas the jump in bridging potential reduces to its value at x ¼ a�.
Consequently, using similar calculations that conduced to Eq. (A.6) leads to Eq. (27). Obtaining Eq. (27)

considers that in the limit as k approaches infinity, the jump in U approaches to zero.

Appendix B

With reference to Fig. 6, evaluating the J-integral (Rice, 1968) along the closed path C which encloses an
area free of singularities, leads to:

JðCÞ ¼
I

C
ðWnx � tiui;xÞds ¼ JðC1Þ þ JðC2Þ þ JðC3Þ ¼ 0; ðB:1Þ

whereW is the strain energy density; nx, the x component of the unit exterior normal to the contour; ti, the
component of the traction vector acting on the surface whose trace in the x–y plane is C; ui;x stands for the
partial derivative of the components of the displacement vector oui=ox; ds, the differential arc length along
C and summation is implied by repeated indices. Since nx ¼ 0 along the C2 contribution

JðC2Þ ¼ �
Z

C2

tiui;1 ds ¼ �
Z D�ww

0

ryy dðDwÞ �
Z D�uu

0

ryx dðDuÞ; ðB:2Þ

with D�ww and D�uu are the separations at the end of the bridged surfaces. Thus, the J-integral conservation
(B.1) provides Eq. (28).

If bridging stresses derive from a displacement potential U then

Jb ¼ UðD�ww;D�uuÞ: ðB:3Þ
Jb is linked to the energy dissipation of the bridging mechanism introduced in (11) by

d

da

Z a

0

U dx1 ¼
Z a

0

o

oa
U dx1 þ Jb; ðB:4Þ

where total derivative d=da and partial derivative o=oa by considerations about an eulerian reference
system moving with the crack tip satisfy the following relation

d

da
ðÞ ¼ o

oa
ðÞ � o

ox
ðÞ:

When the bridging zone has a self-similar profile and a constant length during delamination advancing, a
steady state large-scale bridging is reached and the Jext becomes equal to the external energy release rate Gext

defined as

Gext ¼ � d

da

X4
i¼1

Z ‘i

0

Ui ui;wi;wið Þ½ �dxi

(
þ
Z L�a

0

Kdx3 �
X2
i¼1

F i 
 u0i

)
;

since

Gext ¼ Jext þ
Z a

0

o

oa
U dx1; ðB:5Þ

and oU=oa vanishes. Useful limit solutions can be obtained in a steady state case because Jext does not
depend on bridging law.
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Appendix C

The mode I displacement function vector is

yI ¼ Dwð�Þ;Dw0ð�Þ;Dwð�Þ;Dw0ð�Þ;DwðþÞ;Dw0ðþÞ;DwðþÞ;Dw0ðþÞ
n oT

; ðC:1Þ

where, considering the same reference system introduced for Eq. (17), the superscripts (�) and (þ) denote
that the relevant functions are defined along the opening bridging zone and the bonded zone (i.e. [0; byy ] and
[byy ; L� aþ byy ]), respectively. The superscript T indicates transposition. Analogously, the mode II dis-
placement function vector is

yII ¼ Duð�Þ;Du0ð�Þ;DuðþÞ;Du0ðþÞ� �T
; ðC:2Þ

where with the same reference system introduced for Eq. (18), the superscripts (�) and (þ) refer to the
bridging sliding zone and bonded zone (i.e. [0; byx] and [byx; L� aþ byx]), respectively.

The linear operator Fk has the following matrix form:

Fk ¼

F
ð�Þ
I 0 0 0

0 F
ðþÞ
I 0 0

0 0 F
ð�Þ
II 0

0 0 0 F
ðþÞ
II

2
6664

3
7775; ðC:3Þ

where

F
ð�Þ
I ¼

0 1 0 0
�2r0yy
Dw0A	 0 0 �1

0 0 0 1

0 A	

D
A	

D 0

2
6664

3
7775; F

ðþÞ
I ¼

0 1 0 0
2k
A	 0 0 �1

0 0 0 1

0 A	

D
A	

D 0

2
6664

3
7775; F

ð�Þ
II ¼

0 1
�r0yx
Du0 ðh

2

2D þ 2
AÞ 0

" #
;

F
ðþÞ
II ¼

0 1

kðh2
2D þ 2

AÞ 0

� �
;

while d is

0; 2r0
yy=A

	; 0; 0; 0; 0; 0; 0; 0;
hðT1 þ T2Þ

2D

�
þ h2

2D

�
þ 2

A

�
r0
yx

Du
Duj j ; 0;

hðT1 þ T2Þ
2D

)T

: ðC:4Þ

Note that d depends non-linearly on the interface sliding displacement function.
The particular solution of (33) assumes the form

�yyk ¼ Dw0; 0; 0; 0; 0; 0; 0; 0;Du0
Du
Duj j

"
þ T1 þ T2
2r0

yx hþ 2D
Ah

� �
#
; 0;� h T1 þ T2ð Þ

k h2 þ 4D
A

� � ; 0
( )T

: ðC:5Þ

The matrix of boundary conditions B assumes the following form:

Bk ¼

BIð1Þ BIð12Þ 0 0
BIð21Þ BIð2Þ 0 0
0 0 BIIð1Þ BIIð12Þ
0 0 BIIð21Þ BIIð2Þ

2
664

3
775;
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where

BIð1Þ ¼
U11e

k1byy U21e
k2byy U31e

k3byy U41e
k4byy

U12 þ U13 U22 þ U23 U32 þ U33 U42 þ U43

U14 U24 U34 U44

0 0 0 0

2
664

3
775;

BIð2Þ ¼
U57e

k5ðL�aÞ U67e
k6ðL�aÞ U77e

k7ðL�aÞ U87e
k8ðL�aÞ

�U57 �U67 �U77 �U87

�U58 �U68 �U78 �U88

�U56 � U57 �U66 � U67 �U76 � U77 �U86 � U87

2
664

3
775;

BIð12Þ ¼

�U55 �U65 �U75 �U85

0 0 0 0
0 0 0 0

U55e
k5ðL�aÞ U65e

k6ðL�aÞ U75e
k7ðL�aÞ U85e

k8ðL�aÞ

2
664

3
775;

BIð21Þ ¼

0 0 0 0
U13e

k1byy U23e
k2byy U33e

k3byy U43e
k4byy

U14e
k1byy U24e

k2byy U34e
k3byy U44e

k4byy

U12 þ U13ð Þek1byy U22 þ U23ð Þek2byy U32 þ U33ð Þek3byy U42 þ U43ð Þek4byy

2
664

3
775;

BIIð1Þ ¼
U910 U1010

U910e
k9byx U1010e

k10byx

� �
;

BIIð2Þ ¼
�U1111 �U1211

U1112e
k11ðL�aÞ U1212e

k11ðL�aÞ

� �
;

BIIð12Þ ¼
0 0

�U1112 �U1212

� �
;

BIIð21Þ ¼ U99e
k9byx U109e

k10byx

0 0

� �
;

where Uij indicates the ith component of the jth eigenvector uj. Note that exponential functions for each
mode problem appearing in Eq. (34) refer to two internal reference systems with origins placed at the fronts
of opening or sliding bridging zone and at the delamination front, respectively.

The vector of boundary values t is

t ¼
(

� Dw0;
T2 � T1

A	 ;
M2 �M1

D
; 0; 0; 0; 0; 0; h

M2 þM1

2D
þ N1 � N2

A
; 0

� Du0
Du
Duj j

"
þ T1 þ T2
2r0

yx hþ 2D
Ah

� �
#
� h T1 þ T2ð Þ
k h2 þ 4D

A

� � ; h T1 þ T2ð Þ
k h2 þ 4D

A

� �
)T

:

Using the above solution and noting (2) leads to observing that the opening and sliding interface sepa-
rations and, consequently, energy release rate mode components during the monotonic advance of del-
amination depend, respectively, on
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Dwk ¼ y5ð0Þ ¼ Dwk P ; byy ; a
� �

; Duk ¼ y11ð0Þ ¼ Duk P ; byx; a
� �

;
GI ¼ GI P ; byy ; a

� �
; GII ¼ GII P ; byx; a

� �
;

ðC:6Þ

where P denotes a load parameter, the subscript k indicates a sequence of functions and the energy release
rates are evaluated by the limit values of these sequences.

The solution procedure adopted to solve the equations governing the delamination evolution is now
described in specific details.

After evaluation of the load at the onset of delamination (with byy ¼ byx ¼ 0 and a ¼ a0) by solving the
first term of the non-linear Eq. (20) which contains P as the only unknown, the solution procedure follows
two phases: the bridging formation phase (which coincides with the initiation of delamination growth) and
the bridging transport phase.

In the former bridging tractions appear but the origin of bridging zones remain fixed and, consequently,
bridging lengths are equals: the load is evaluated by solving the first term of Eq. (20) for increasing del-
amination length (i.e. da > 0, a ¼ a0 þ byy ¼ aþ byx).

The latter begins when a limit separation condition (i.e. Duj j ¼ Du0 or Dw ¼ Dw0) at the bridging front
is satisfied and both the delamination front (i.e. da > 0) and opening or sliding bridging fronts (i.e.,
dða� byyÞ > 0 or dða� byxÞ > 0, respectively) propagate according if the opening or sliding limit separation
is reached, respectively. During this phase the load and the opening or sliding bridging lengths are obtained
by solving the first and second equations of the system (20) or the first and third equations of the system
(20), respectively.

For example, if the opening limit separation is first reached, the opening bridging zone propagates to-
gether with delamination (dða� byyÞ > 0 and da > 0), while the sliding bridging zone is not transported (i.e.
dða� byxÞ ¼ 0 and byx ¼ a� a0) and P and byy are extracted by the first and second equations of the system
(20).

Afterwards, it may happen that increasing the delamination length leads to reaching the other limit
separation at the bridging front which has not yet been transported: in this case bridging lengths byx, byy and
the load are obtained by solving the entire system (20).

Alternatively, it may happen that the plate reaches complete delamination (i.e. a ¼ L) without reaching a
second limit separation.

Using a standard search procedure based on a modified Newton method solves the non-linear algebraic
system arising during delamination growth.
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